dr Zuzanna Świrad
Zainteresowania badawcze:
- Współczesne procesy na wybrzeżach skalistych
- Długoterminowa ewolucja wybrzeży skalistych
- Dynamika wybrzeży Arktyki
Doświadczenie zawodowe:
- Adiunkt, Instytut Geofizyki PAN (od 2022)
- Postdoctoral Scholar, Scripps Institution of Oceanography, University of California San Diego, USA (2020-2022)
- Postdoctoral Research Associate, Department of Geography, Durham University, Wielka Brytania (2019-2020)
- Oceanograf, Polska Stacja Antarktyczna, Instytut Biochemii i Biofizyki PAN (2018-2019)
- Teaching Assistant, Department of Geography, Durham University, Wielka Brytania (2014-2018)
- Research Assistant, Department of Geography, University of Cambridge, Wielka Brytania (2014)
- Intern, Scott Polar Research Institute, University of Cambridge, Wielka Brytania (2013-2014)
Wykształcenie:
- PhD, Department of Geography, Durham University, Wielka Brytania (2018)
- Magister, Instytut Geografii i Rozwoju Regionalnego, Uniwersytet Wrocławski (2013)
Projekty naukowe:
- "Erozja klifów wzdłuż skalistych wybrzeży Bałtyku: obserwacje, rekonstrukcje, predykcje", Narodowe Centrum Nauki SONATA 19, 2024-2027, kierowniczka
- "HIRLOMAP - High-resolution and local sea ice product generation for Arctic operations", European Space Agency Sentinel User Preparation (ESA SUP), 2024-2026, liderka zadania, kierowniczka: Malin Johansson, UiT The Arctic University of Norway
- "Long-term coastal cliff retreat rates from cosmogenic 10Be concentrations", PAN-CNRS International Emerging Actions (IEA), 2024-2025, kierowniczka wraz z Vincent Regard, Géosciences Environnement Toulouse
- "FROST: Fibre-optic sensing towards the improvement of environmental monitoring in Svalbard", Svalbard Integrated Arctic Earth Observing System (SIOS), 2023-2025, kierownik: Wojciech Gajek, IGF PAN
- "Bilateral initiative aiming at harmonisation of the Svalbard cooperation (HarSval)", EEA and Norway Grants, 2024-2025, kierownik: Dariusz Ignatiuk, Uniwersytet Śląski
- "Energia fal docierających do brzegów fiordu Hornsund, Svalbard", Narodowe Centrum Nauki SONATINA 5, 2021-2024, kierowniczka
- "Q-MESA | Mechanizmy Ewolucji Obszarów Piaskowcowych, Centralna i Zachodnia Europa", Narodowe Centrum Nauki SONATA 16, 2021-2024, kierownik: Filip Duszyński, Uniwersytet Wrocławski
- "High-resolution imagery for mapping nearshore sea ice", Svalbard Integrated Arctic Earth Observing System (SIOS) - Planet, 2023-2024, kierowniczka
Publikacje:
23. Jeong A., Seong J.B., Choi K.H., Swirad Z.M., Lee C.-H. & Yue B.Y. 2024. Shore platform erosion and cliff retreat in the Eastern Korea: A quantified assessment using 10Be concentrations and numerical modeling. Marine Geology 472: 107291. https://doi.org/10.1016/j.margeo.2024.107291
22. Swirad Z.M., Johansson A.M. & Malnes E. 2024. Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023. The Cryosphere 18: 895-910. https://doi.org/10.5194/tc-18-895-2024
21. Kincey M.E., Rosser N.J., Swirad Z.M., Robinson T.R., Shrestha R., Pujara D.S., Basyal G.K., Densmore A.L., Arrell K., Oven K.J. & Duna A. 2024. National-scale rainfall-triggered landslide susceptibility and exposure in Nepal. Earth's Future 12(2): e2023EF004102. https://doi.org/10.1029/2023EF004102
20. Dickson M.E., Matsumoto H., Stephenson W.J., Swirad Z.M., Thompson C.F. & Young, A.P. 2023. Sea-level rise may not uniformly accelerate cliff erosion rates. Nature Communications 14: 8485. https://doi.org/10.1038/s41467-023-44149-3
19. Swirad Z.M., Moskalik M. & Herman, A. 2023. Wind wave and water level dataset for Hornsund, Svalbard (2013–2021). Earth System Science Data: 15, 2623-2633. https://doi.org/10.5194/essd-15-2623-2023
18. Kincey M.E., Rosser N.J., Densmore A.L., Robinson T.R., Shrestha R., Pujara D.S., Horton P., Swirad Z.M., Oven K.J. & Arrell K. 2023. Modelling post-earthquake cascading hazards: Changing patterns of landslide runout following the 2015 Gorkha earthquake, Nepal. Earth Surface Processes and Landforms 48(3): 537-554. https://doi.org/10.1002/esp.5501
17. Swirad Z.M. & Young A.P. 2022. Spatial and temporal trends in California coastal cliff retreat. Geomorphology 412: 108318. https://doi.org/10.1016/j.geomorph.2022.108318
16. Swirad Z.M. & Young A.P. 2022. CliffDelineaTool v1.2.0: an algorithm for identifying coastal cliff base and top positions. Geoscientific Model Development 15: 1499-1512. https://doi.org/10.5194/gmd-15-1499-2022
15. Swirad Z.M. & Young A.P. 2021. Automating coastal cliff erosion measurements from large-area LiDAR datasets in California, USA. Geomorphology 389: 107799. https://doi.org/10.1016/j.geomorph.2021.107799
14. Kincey M.E., Rosser N.J., Robinson T.R., Densmore A.L., Shrestha R., Pujara D.S., Oven K.J., Williams J.G. & Swirad Z.M. 2021. Evolution of coseismic and post‐seismic landsliding after the 2015 Mw 7.8 Gorkha earthquake, Nepal. Journal of Geophysical Research: Earth Surface 126(3): e2020JF005803. https://doi.org/10.1029/2020JF005803
13. Young A.P., Guza R.T., Matsumoto H., Merrifield M., O'Reilly W.C. & Swirad Z.M. 2021. Three years of weekly observations of coastal cliff erosion by waves and rainfall. Geomorphology 375: 107545. https://doi.org/10.1016/j.geomorph.2020.107545
12. Swirad Z.M., Rosser N.J., Brain M.J., Rood D.H., Hurst M.D., Wilcken K.M. & Barlow J. 2020. Cosmogenic exposure dating reveals limited long-term variability in erosion of a rocky coastline. Nature Communications 11: 3804. https://doi.org/10.1038/s41467-020-17611-9
11. Rees G., Hofgaard A., Boudreau S., Cairns D., Harper K., Mamet S., Mathisen I., Swirad Z.M. & Tutubalina O. 2020. Is subarctic forest advance able to keep pace with climate change? Global Change Biology 26(7): 3965-3977. https://doi.org/10.1111/gcb.15113
10. Lim M., Strzelecki M.C., Kasprzak M., Swirad Z.M., Webster C., Woodward J. & Gjelten H. 2020. Arctic rock coast responses under a changing climate. Remote Sensing of Environment 236: 111500. https://doi.org/10.1016/j.rse.2019.111500
9. Swirad Z.M., Rosser N.J. & Brain M.J. 2019. Identifying mechanisms of shore platform erosion using Structure-from-Motion (SfM) photogrammetry. Earth Surface Processes and Landforms 44(8): 1542-1558. https://doi.org/10.1002/esp.4591
8. Orgel C., Hauber E., van Gasselt S., Reiss D., Johnsson A., Ramsdale J.D., Smith I., Swirad Z.M., Séjourné A., Wilson J.T., Balme M.R., Conway S.J., Costard F., Eke V.R., Gallagher C., Kereszturi Á., Łosiak A., Massey R.J., Platz T., Skinner J.A. & Teodoro L.F.A. 2019. Gridmapping the Northern Plains of Mars: a new overview of recent water- and ice-related landforms in Acidalia Planitia. Journal of Geophysical Research: Planets 124(2): 454-482. https://doi.org/10.1029/2018je005664
7. Séjourné A., Costard F., Swirad Z.M., Łosiak A., Bouley S., Smith I., Balme M.R., Orgel C., Ramsdale J.D., Hauber E., Conway S.J., van Gasselt S., Reiss D., Johnsson A., Gallagher C., Skinner J.A., Kereszturi Á. & Platz T. 2019. Grid-mapping the northern plains of Mars: using morphotype and distribution of ice-related landforms to understand multiple ice-rich deposits in Utopia Planitia. Journal of Geophysical Research: Planets 124(2): 483-503. https://doi.org/10.1029/2018je005665
6. Ramsdale J.D., Balme M.R., Gallagher C., Conway S.J., Smith I.B., Hauber E., Orgel C., Séjourné A., Costard F., Eke V.R., van Gasselt S.A., Johnsson A., Kereszturi A., Losiak A., Massey R.J., Platz T., Reiss D., Swirad Z.M., Teodoro L.F.A. & Wilson J.T. 2019. Gridmapping the northern plains of Mars: geomorphological, radar and water-equivalent hydrogen results from Arcadia Planitia suggest possible fluvial and volcanic systems overlain by a ubiquitous and heavily degraded ice-rich latitude-dependent mantle. Journal of Geophysical Research: Planets 124(2): 504-527. https://doi.org/10.1029/2018je005663
5. Swirad Z.M., Migoń P. & Strzelecki M.C. 2017. Rock control on the shape of coastal embayments of north-western Hornsund, Svalbard. Zeitschrift für Geomorphologie 61(1): 11-28. https://doi.org/10.1127/zfg/2017/0403
4. Strzelecki M.C., Kasprzak M., Lim M., Swirad Z.M., Jaskólski M., Pawłowski Ł. & Modzel P. 2017. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard. Science of The Total Environment 607-608: 443-453. https://doi.org/10.1016/j.scitotenv.2017.07.009
3. Ramsdale J.D., Balme M.R. Conway S.J., Gallagher C., van Gasselt S.A., Hauber E., Orgel C., Séjourné A., Skinner J.A., Costard F., Johnsson A., Losiak A., Reiss D., Swirad Z.M., Kereszturo A., Smith I.B. & Platz T. 2017. Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas. Planetary and Space Science 140: 49-61. https://doi.org/10.1016/j.pss.2017.04.002
2. Swirad Z.M., Rosser N.J., Brain M.J. & Vann Jones E.C. 2016. What controls the geometry of rocky coasts at the local scale? Journal of Coastal Research SI 75: 612-616. https://doi.org/10.2112/si75-123.1
1. Swirad Z.M. & Rees W.G. 2015. Geomorphometric analysis of a rocky coastline: an example from Hornsund, Svalbard. International Journal of Geographical Information Science 29(9): 1694-1717. https://doi.org/10.1080/13658816.2015.1061131